Pandas

Pandas is a library in python that is used for data manipulation and data analysis. 

You can install pandas in your jupyter terminal by writing:
- conda install pandas

Once you install the library then you can use the import keyword to access all the functions that are used in pandas.

DataFrame: It is just like as your excel spreadsheet which contains rows and columns and DF is the most commmonly used pandas object.

-creating a dataframe

import pandas as pd
student_details = {
'DOB': ['1/1/2017','1/2/2017',
'1/3/2017','1/4/2017','1/5/2017','1/6/2017'],
'MARKS': [32,35,28,24,32,31],
'SPORTS': ['Chess', 'Hockey', 'Football','Basketball','Ludo', 'Pool'],
'NAME':['Tanmay','Sarthak','Sanyam','Sanskar','Deepak','Harsh']
}
print(student_details)
df = pd.DataFrame(student_details)
print(df)

Output:

DOB MARKS SPORTS NAME

0 1/1/2017 32 Chess Tanmay
1 1/2/2017 35 Hockey Sarthak
2 1/3/2017 28 Football Sanyam
3 1/4/2017 24 Basketball Sanskar
4 1/5/2017 32 Ludo Deepak
5 1/6/2017 31 Pool Harsh

1. df.shape # This function will return the dimensions

Output:
(6, 4)

2. df.head(3) # This function will return the top n rows and columns( 5 by default).

Output:

DOB MARKS SPORTS NAME

0 1/1/2017 32 Chess Tanmay
1 1/2/2017 35 Hockey Sarthak
2 1/3/2017 28 Football Sanyam

3.df.tail(2) # This function will return the last n rows and columns(5 by default)

Output:

DOB MARKS SPORTS NAME
4 1/5/2017 32 Ludo Deepak
5 1/6/2017 31 Pool Harsh

4. df.columns:

Output:
Index(['DOB', 'MARKS', 'SPORTS', 'NAME'], dtype='object')

5. df[1:4]

Output:

DOB MARKS SPORTS NAME

0 1/1/2017 32 Chess Tanmay
1 1/2/2017 35 Hockey Sarthak
2 1/3/2017 28 Football Sanyam

6. df['DOB']

Output:

0 1/1/2017
1 1/2/2017
2 1/3/2017
3 1/4/2017
4 1/5/2017
5 1/6/2017
Name: DOB, dtype: object

7. df.dtypes

Output:
DOB object
MARKS int64
SPORTS object
NAME object
dtype: object

8. df['MARKS'].max()
Output:
35

9. df['MARKS'].min()
Output:
24

10. df['MARKS'].mean()
Output:
30.333333333333332

Similarly there are many more functions like describe,loc,index etc. you can work upon different data.

Leave a Reply